Gravity and the Structure of Noncommutative Algebras

نویسنده

  • M. Burić
چکیده

A gravitational field can be defined in terms of a moving frame, which when made noncommutative yields a preferred basis for a differential calculus. It is conjectured that to a linear perturbation of the commutation relations which define the algebra there corresponds a linear perturbation of the gravitational field. This is shown to be true in the case of a perturbation of Minkowski space-time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on power values of generalized derivation in prime ring and noncommutative Banach algebras

Let $R$ be a prime ring with extended centroid $C$, $H$ a generalized derivation of $R$ and $ngeq 1$ a fixed integer. In this paper we study the situations: (1) If $(H(xy))^n =(H(x))^n(H(y))^n$ for all $x,yin R$; (2) obtain some related result in case $R$ is a noncommutative Banach algebra and $H$ is continuous or spectrally bounded.

متن کامل

Locally Anisotropic Supergravity and Gauge Gravity on Noncommutative Spaces

We outline the the geometry of locally anisotropic (la) superspaces and la–supergravity. The approach is backgrounded on the method of anholonomic superframes with associated nonlinear connection structure. Following the formalism of enveloping algebras and star product calculus we propose a model of gauge la–gravity on noncommutative spaces. The corresponding Seiberg–Witten maps are establishe...

متن کامل

Gauge and Einstein Gravity from Non–Abelian Gauge Models on Noncommutative Spaces

Following the formalism of enveloping algebras and star product calculus we formulate and analyze a model of gauge gravity on noncommutative spaces and examine the conditions of its equivalence to general relativity. The corresponding Seiber–Witten maps are established which allow the definition of respective dynamics for a finite number of gravitational gauge field components on noncommutative...

متن کامل

On n-ary Algebras, Branes and Polyvector Gauge Theories in Noncommutative Clifford Spaces

Polyvector-valued gauge field theories in noncommutative Clifford spaces are presented. The noncommutative star products are associative and require the use of the Baker-Campbell-Hausdorff formula. Actions for pbranes in noncommutative (Clifford) spaces and noncommutative phase spaces are provided. An important relationship among the n-ary commutators of noncommuting spacetime coordinates [X, X...

متن کامل

Conceptual Issues for Noncommutative Gravity on Algebras and Finite Sets

We discuss some of the issues to be addressed in arriving at a definitive noncommutative Riemannian geometry that generalises conventional geometry both to the quantum domain and to the discrete domain. This also provides an introduction to our 1997 formulation based on quantum group frame bundles. We outline now the local formulae with general differential calculus both on the base ‘quantum ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008